Física


Dinâmica
Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo consta, este foi o primeiro passo para o entendimento da gravidade, que atraia a maçã.
Com o entendimento da gravidade, vieram o entendimento de Força, e as três Leis de Newton.
Na cinemática, estuda-se o movimento sem compreender sua causa. Na dinâmica, estudamos a relação entre a força e movimento.

Força: É uma interação entre dois corpos.

O conceito de força é algo intuitivo, mas para compreendê-lo, pode-se basear em efeitos causados por ela, como:
Aceleração: faz com que o corpo altere a sua velocidade, quando uma força é aplicada.
Deformação: faz com que o corpo mude seu formato, quando sofre a ação de uma força.

Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.
Dadas várias forças aplicadas a um corpo qualquer:


A força resultante será igual a soma vetorial de todas as forças aplicadas:


Leis de Newton
As leis de Newton constituem os três pilares fundamentais do que chamamos Mecânica Clássica, que justamente por isso também é conhecida por Mecânica Newtoniana.

1ª Lei de Newton - Princípio da Inércia
  • Quando estamos dentro de um carro, e este contorna uma curva, nosso corpo tende a permanecer com a mesma velocidade vetorial a que estava submetido antes da curva, isto dá a impressão que se está sendo "jogado" para o lado contrário à curva. Isso porque a velocidade vetorial é tangente a trajetória.
  • Quando estamos em um carro em movimento e este freia repentinamente, nos sentimos como se fôssemos atirados para frente, pois nosso corpo tende a continuar em movimento.
estes e vários outros efeitos semelhantes são explicados pelo princípio da inércia, cujo enunciado é:
"Um corpo em repouso tende a permanecer em repouso, e um corpo em movimento tende a permanecer em movimento."
Então, conclui-se que um corpo só altera seu estado de inércia, se alguém, ou alguma coisa aplicar nele uma força resultante diferente se zero.

2ª Lei de Newton - Princípio Fundamental da Dinâmica
Quando aplicamos uma mesma força em dois corpos de massas diferentes observamos que elas não produzem aceleração igual.
A 2ª lei de Newton diz que a Força é sempre diretamente proporcional ao produto da aceleração de um corpo pela sua massa, ou seja:
ou em módulo: F=ma

Onde:
F é a resultante de todas as forças que agem sobre o corpo (em N);
m é a massa do corpo a qual as forças atuam (em kg);
a é a aceleração adquirida (em m/s²).

A unidade de força, no sistema internacional, é o N (Newton), que equivale a kg m/s² (quilograma metro por segundo ao quadrado).
Exemplo:
Quando um força de 12N é aplicada em um corpo de 2kg, qual é a aceleração adquirida por ele?
F=ma
12=2a
a=6m/s²

3ª Lei de Newton - Princípio da Ação e Reação
Quando uma pessoa empurra um caixa com um força F, podemos dizer que esta é uma força de ação. mas conforme a 3ª lei de Newton, sempre que isso ocorre, há uma outra força com módulo e direção iguais, e sentido oposto a força de ação, esta é chamada força de reação.
Esta é o princípio da ação e reação, cujo enunciado é:
"As forças atuam sempre em pares, para toda força de ação, existe uma força de reação."


Força de Tração
Dado um sistema onde um corpo é puxado por um fio ideal, ou seja, que seja inextensível, flexível e tem massa desprezível.
Podemos considerar que a força é aplicada no fio, que por sua vez, aplica uma força no corpo, a qual chamamos Força de Tração .


Força Peso
Quando falamos em movimento vertical, introduzimos um conceito de aceleração da gravidade, que sempre atua no sentido a aproximar os corpos em relação à superficie.
Relacionando com a 2ª Lei de Newton, se um corpo de massa m, sofre a aceleração da gravidade, quando aplicada a ele o principio fundamental da dinâmica poderemos dizer que:
A esta força, chamamos Força Peso, e podemos expressá-la como:
ou em módulo: 
O Peso de um corpo é a força com que a Terra o atrai, podendo ser váriável, quando a gravidade variar, ou seja, quando não estamos nas proximidades da Terra.
A massa de um corpo, por sua vez, é constante, ou seja, não varia.
Existe uma unidade muito utilizada pela indústria, principalmente quando tratamos de força peso, que é o kilograma-força, que por definição é:
1kgf é o peso de um corpo de massa 1kg submetido a aceleração da gravidade de 9,8m/s².
A sua relação com o newton é:

Além da Força Peso, existe outra que normalmente atua na direção vertical, chamada Força Normal.
Esta é exercida pela superfície sobre o corpo, podendo ser interpretada como a sua resistência em sofrer deformação devido ao peso do corpo. Esta força sempre atua no sentido perpendicular à superfície, diferentemente da Força Peso que atua sempre no sentido vertical.
Analisando um corpo que encontra-se sob uma superfície plana verificamos a atuação das duas forças.
Para que este corpo esteja em equilíbrio na direção vertical, ou seja, não se movimente ou não altere sua velocidade, é necessário que os módulos das forças Normal e Peso sejam iguais, assim, atuando em sentidos opostos elas se anularão.

Por exemplo:
Qual o peso de um corpo de massa igual a 10kg:
(a) Na superfície da Terra (g=9,8m/s²);
(b) Na supefície de Marte (g=3,724m/s²).

(a) 

(b) 

Força de Atrito
Até agora, para calcularmos a força, ou aceleração de um corpo, consideramos que as superfícies por onde este se deslocava, não exercia nenhuma força contra o movimento, ou seja, quando aplicada uma força, este se deslocaria sem parar.
Mas sabemos que este é um caso idealizado. Por mais lisa que uma superfície seja, ela nunca será totalmente livre de atrito.
Sempre que aplicarmos uma força a um corpo, sobre uma superfície, este acabará parando.
É isto que caracteriza a força de atrito:
  • Se opõe ao movimento;
  • Depende da natureza e da rugosidade da superfície (coeficiente de atrito);
  • É proporcional à força normal de cada corpo;
  • Transforma a energia cinética do corpo em outro tipo de energia que é liberada ao meio.
A força de atrito é calculada pela seguinte relação:
Onde:
μ: coeficiente de atrito (adimensional)
N: Força normal (N)

Atrito Estático e Dinâmico
Quando empurramos um carro, é fácil observar que até o carro entrar em movimento é necessário que se aplique uma força maior do que a força necessária quando o carro já está se movimentando.
Isto acontece pois existem dois tipo de atrito: o estático e o dinâmico.
 
Atrito Estático
É aquele que atua quando não há deslizamento dos corpos.
A força de atrito estático máxima é igual a força mínima necessária para iniciar o movimento de um corpo.
Quando um corpo não está em movimento a força da atrito deve ser maior que a força aplicada, neste caso, é usado no cálculo um coeficiente de atrito estático: .
Então:

Atrito Dinâmico
É aquele que atua quando há deslizamento dos corpos.
Quando a força de atrito estático for ultrapassada pela força aplicada ao corpo, este entrará em movimento, e passaremos a considerar sua força de atrito dinâmico.
A força de atrito dinâmico é sempre menor que a força aplicada, no seu cálculo é utilizado o coeficiente de atrito cinético:
Então:


Força Elástica
Imagine uma mola presa em uma das extremidades a um suporte, e em estado de repouso (sem ação de nenhuma força).
Quando aplicamos uma força F na outra extremidade, a mola tende a deformar (esticar ou comprimir, dependendo do sentido da força aplicada).
Ao estudar as deformações de molas e as forças aplicadas, Robert Hooke (1635-1703), verificou que a deformação da mola aumenta proporcionalmente à força. Daí estabeleceu-se a seguinte lei, chamada Lei de Hooke:
Onde:
F: intensidade da força aplicada (N);
k: constante elástica da mola (N/m);
x: deformação da mola (m).

A constante elástica da mola depende principalmente da natureza do material de fabricação da mola e de suas dimensões. Sua unidade mais usual é o N/m (newton por metro) mas também encontramos N/cm; kgf/m, etc.

Exemplo:
Um corpo de 10kg, em equilíbrio, está preso à extremidade de uma mola, cuja constante elástica é 150N/m. Considerando g=10m/s², qual será a deformação da mola?
Se o corpo está em equilíbrio, a soma das forças aplicadas a ela será nula, ou seja:
, pois as forças tem sentidos opostos.

Plano Inclinado

Dadas duas trajetórias:
Em qual delas é "mais fácil" carregar o bloco?
Obviamente, na trajetória inclinada, pois no primeiro caso, teremos que realizar uma força que seja maior que o peso do corpo. Já no segundo caso, Defermos fazer uma força que seja maior que uma das componentes de seu peso, neste caso, a componete horizontal, que terá instensidade menor conforme o ângulo formado for menor.
Por isso, no nosso cotidiano, usamos muito o plano inclinado para facilitar certas tarefas.
Ao analizarmos as forças que atuam sobre um corpo em um plano inclinado, temos:
A força Peso e a força Normal, neste caso, não tem o mesma direção pois, como já vimos, a força Peso, é causada pela aceleração da gravidade, que tem origem no centro da Terra, logo a força Peso têm sempre direção vertical. Já a força Normal é a força de reação, e têm origem na superfície onde o movimento ocorre, logo tem um ângulo igual ao plano do movimento.
Para que seja possível realizar este cálculo devemos estabelecer algumas relações:

  • Podemos definir o plano cartesiano com inclinação igual ao plano inclinado, ou seja, com o eixo x formando um ângulo igual ao do plano, e o eixo y, perpendicular ao eixo x;
  • A força Normal será igual à decomposição da força Peso no eixo y;
  • A decomposição da força Peso no eixo x será a responsável pelo deslocamento do bloco;
  • O ângulo formado entre a força Peso e a sua decomposição no eixo y, será igual ao ângulo formado entre o plano e a horizontal;
  • Se houver força de atrito, esta se oporá ao movimento, neste caso, apontará para cima.
Sabendo isto podemos dividir as resultantes da força em cada direção:
Em y:
como o bloco não se desloca para baixo e nem para cima, esta resultante é nula, então:
mas
então:

Em x:
mas
então:

Exemplo:
Um corpo de massa 12kg é abandonado sobre um plano inclinado formando 30° com a horizontal. O coeficiente de atrito dinâmico entre o bloco e o plano é 0,2. Qual é a aceleração do bloco?
Em y:

Em x: